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Abstract. The population size of genetic algorithms (GAs) affects the
quality of the solutions and the time required to find them. While progress
has been made in estimating the population sizes required to reach a de-
sired solution quality for certain problems, in practice the sizing of pop-
ulations is still usually performed by trial and error. These trials might
lead to find a population that is large enough to reach a satisfactory solu-
tion, but there may still be opportunities to optimize the computational
cost by reducing the size of the population. This paper presents a tech-
nique called plague that periodically removes a number of individuals
from the population as the GA executes. Recently, the usefulness of the
plague has been demonstrated for genetic programming. The objective
of this paper is to extend the study of plagues to genetic algorithms. We
experiment with deceptive trap functions, a tunable difficult problem for
GAs, and the experiments show that plagues can save computational
time while maintaining solution quality and reliability.

1 Introduction

When researchers apply evolutionary algorithms (EAs), one of the first parame-
ters to be chosen is the size of the population. Usually, difficult problems require
a large population, while easier problems can be solved with a small popula-
tion [1, 2]. A large number of individuals requires a large amount of computing
resources, both memory space and computing power for the fitness evaluations.
Recently, a technique called plague that dynamically reduces the population size
was demonstrated to improve the performance of genetic programming without
sacrificing solution quality [3, 4]. In this paper, we demonstrate that plagues can
also be successfully applied to genetic algorithms.

Plagues work by periodically removing a number of individuals from the
population. Several policies may be employed for selecting individuals to be
deleted. For instance, individuals may be removed at random or they can be
removed according to some criteria, such as their fitness value, size (in the case of
GP), or similarity to other individuals in the population. Plagues can be applied
with arbitrary fixed frequencies or they can be triggered by some measure of the
progress of the run, such as a measure of population diversity.



In this paper we show, by means of a series of experiments, that plagues may
help GAs solve difficult problems in shorter times. The experiments consider
a classic tunable problem usually employed to test GAs. As a first study of
the application of plagues in GAs, this paper reports results using plagues in
every generation, removing a fixed number of individuals per generation, and
choosing the worst individuals for removal. We experiment varying the number
of individuals removed. Other options of frequency and removal policies are left
for future studies. The results suggest that plagues can reduce the computational
effort required to reach the global optimum with some certainty.

This paper is structured as follows: section 2 presents a summary of the
research related to the plague operator and also some arguments supporting
its usefulness. Section 3 describes the way we measure results and the problem
employed as a benchmark, while section 4 presents some results obtained using
plagues and GAs. Finally we offer our conclusions in section 5.

2 Previous Work

A number of researchers have focused on the study of population size, because of
its importance for obtaining solutions of high quality. One of the first studies of
population sizing is by Goldberg [6]. His objective was to find the population size
that maximizes the rate of schema processing, and found that this rate is max-
imized with small populations when fitness is evaluated serially and with large
populations with parallel evaluations. Goldberg et al. [7] proposed a population
sizing estimate based on the variance of fitness. This estimate directly tied popu-
lation size to solution quality. Goldberg et al. [1] refined the model and obtained
a conservative bound on the convergence quality of GAs. Their model is based
on the probability of choosing correctly between the best building block and its
closest competitor. Later, Harik et al. [8, 2] used some of Goldberg’s results to
obtain a model that, for some problems, relates accurately the population size
to the quality of the solution of a GA.

A few authors have addressed the idea of populations of variable size in GAs.
For instance, Kirley applied the concept of “disasters” when using cellular GA [9],
where the population is laid on a lattice and individuals interact only with their
neighbors. Kirley’s idea was to suppress all the individuals in a randomly chosen
portion of the lattice. Eventually, the area that suffered the disaster is repop-
ulated with offspring from the individuals that border the disaster area. Since
disasters have the effect of fragmenting the population into isolated groups of
individuals, it is possible to preserve lesser individuals that would be suppressed
quickly in the original population. This mechanism helps maintain diversity in
the population that might be useful in later stages of the algorithm.

Smith and Smuda [10] adapted the population size using Goldberg et al.’s
population sizing theory [1]. Smith and Smuda employed a dynamic estimate of
the variance of building blocks. Tan et al. [11], employ an EA with dynamic pop-
ulation size for discovering the tradeoff surface when solving a multi-objective



optimization problem. They modify the size of populations according to distri-
bution of solutions on the search space.

However, all these proposals differ with the concept of plague described
above, because plagues do not take into account the structure of the popula-
tion (as in Kirley’s work) nor the distribution of solutions (as in Smith’s and
Tan’s work).

In genetic programming (GP), people have been even more concerned with
deciding the size of populations, because of the well-known problem of bloat [12],
which consists of the growth of individuals as the search progresses. Since the
total effort depends on the size of the individuals and the population size, de-
ciding the size of the population is important for reducing the computing effort
that will be required.

During the last year, the first attempts to directly change the size of the pop-
ulation while the evolutionary process is working were presented in GP. Plagues
were first described by Fernández [3] as a new operator acting on the population,
and were described in more detail in [5] and [4].

Similar proposals were also described by Monsieurs [13] and Luke [14] later.
Luke et al. [14] performed a few experiments to extend the concept of plague
to GAs. Their results, however, did not show statistically significant differences
in the final fitness values obtained by a fixed-size GA and one with a plague on
three optimization problems. Our results differ from Luke’s. We not only study
mean best fitness values obtained from a set of runs, but also the number of
runs that reach the optimum, and these are the curves that better show the
advantage of the reduction of population size.

3 Methods

3.1 Computing Effort

In EAs studies, results are commonly presented by comparing a measure of
quality (e.g., number of successes in a set of runs, average fitness value) to the
number of generations employed. But this comparison is correct only when the
computational effort required for computing each of the generations is the same.
When conditions change from generation to generation, this way of presenting
results is misleading. This is usually the case in GP, when individuals grow as
a run progresses. In our case, since plagues reduce the size of populations each
generation, the computing power required to evaluate each generation decreases
progressively. In [15] and [16] a new way of measuring results under these con-
ditions was presented for GP. Here, we adapt that measure for GA.

We use the effort of computation defined as the total number of individuals
evaluated for a given number of generations. To calculate this strictly increasing
measure, we must first compute the partial effort at a given generation (that we
will denote as PEg) defined as the number of individuals evaluated (PEg = i, i is
the number of individuals in the population at generation g). Then, we calculate
the effort of computation Eg , at generation g, as

Eg = PEg + PEg−1 + PEg−2 + . . . + PE0.



Thus the effort of computation for generation g is the total number of individ-
uals that have been evaluated before generation g + 1. Clearly, this measure is
problem-specific but it is useful for comparing different solutions and different
settings of experiments for the same problem.

It was not our intention here to compare execution times. Our intention is to
track the convergence process itself, without directly taking into account actual
execution time. However, a reduced effort of computation will imply a reduction
in the computation time, regardless of the computer employed.

3.2 Experiments

The experiments used deceptive trap functions, which are used in numerous
studies of genetic algorithms because they have known properties and their dif-
ficulty can be regulated easily [17]. The values of the deceptive functions depend
on the number, u, of bits set to one in their k-bit input substring. The fitness
increases with more bits set to zero until it reaches a local optimum, but the
global maximum is at the opposite extreme where all the bits in the input are
set to one. The order-k traps are defined as

fk(u) =

{

k − u − d if u < k,

k if u = k,
(1)

where d is the fitness difference of the two peaks, which in our case is always
set to one. The trap functions become more difficult by increasing the number
of bits k in the basin of the deceptive optimum and by reducing d.

In the experiments, we varied k from 4 to 8. The fitness functions are formed
by concatenating fully-deceptive trap functions and adding their individual con-
tributions. We set the length of the individuals to l = 20 ∗ k bits. For example,
for the 6-bit trap problem, the individuals are l = 120 bits long and their fit-
ness is calculated as

∑

20

i=0
f6(u6i), where u6i denotes the number of ones in the

substring that starts at position 6i.
We follow previous studies that used deceptive trap functions [2, 19] and set

the mutation probability to zero and use pairwise (binary) tournament selection.
Although in [19] two-point crossover is used for avoiding excessive disruption on
the longer BBs, we used uniform crossover with probability 1. We wanted to
make the problem more difficult so that experiments with larger populations are
of interest.

Plagues remove a fixed number of individuals every generation. The number
of individuals to be removed is a parameter of the operator, and is specified
below for each experiment as well as the initial population sizes. When plague is
applied, we always remove the worst individuals from the population, according
to their fitness value. As we mentioned above, other removal strategies based on
fitness or similarity to other individuals are possible, but their study is outside
the scope of this paper. Each run was terminated after 50 generations or until
the population was empty.
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Fig. 1. Fitness (left) and number of times the experiment reached the global optimum
out of 50 experiments (right) for different plagues. The initial population size was
N = 5000 individuals and k = 4. The error bars denote 95% confidence intervals.

The experiments consider 50 independent runs for each of the parameter
settings. The graphs present the number of times that the GAs reached the
global solution or the mean fitness values vs. the number of fitness evaluations.

The experiments were carried out using GALib [18]. Only small modifications
to the source code were necessary to include the plague operation.

4 Experimental Results

We begun the experiments using the fitness function formed with 20 copies of
a k = 4 deceptive trap. Figure 1 shows average best fitness vs. the effort of
computation and the number of runs that have reached the maximum fitness
value for each effort level. In these experiments, the initial population was set
to 5000 individuals and the plague was applied every generation removing 50,
75, and 100 individuals. The figure clearly shows that as more individuals are
removed, fewer functions evaluations are required to reach a specific fitness level
or a number of optima.

The initial population sizes used in the previous experiments are large enough
to allow the GAs to find the global solution every time, with and without plagues.
This observation suggests that although the plagues saved considerable compu-
tational effort, it may be possible to obtain further savings by using smaller
initial populations. However, we expect that smaller populations (with or with-
out plague) will result in lower reliability of the GAs and the global optimum will
be found less often than with large populations. The next series of experiments
examine the effect of plagues on much smaller populations.

Figures 2 and 3 show results obtained when comparing GAs with fixed pop-
ulations and GAs with plagues. The initial number of individuals in the popula-
tions varies from 1250 to 500 individuals, and we experimented with plagues of
5 and 10 individuals. The general trend of these experiments is consistent with
the previous experiments with very large initial populations: for a similar effort,
the GAs reach the optimum more often with plagues than without plagues and
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(a) N = 1250
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(b) N = 1000
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(c) N = 750

0

5

10

15

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000 30000

N
um

be
r 

of
 o

pt
im

a

Function evaluations

No Plague
Plague 5

Plague 10

(d) N = 500

Fig. 2. Number of times that the maximum fitness is reached in 50 runs with and with-
out plagues. In these experiments, k = 4 and plagues that remove 5 and 10 individuals
per generation were used. Error bars denote 95% confidence intervals.

there are only small differences when the fitness is compared. For N = 1250 and
N = 1000, the plagues save time and maintain the same reliability of the GA
without plagues. But as smaller populations are used, the GA has difficulties lo-
cating the global optimum consistently. For N = 1000, the GA without plagues
misses the global about 20% of the time, which is about the same reliability of
the GA with a plague that removes 5 individuals. Removing more individuals
or using smaller initial populations results in even more failures to locate the
global (e.g., see the graph for N = 500).

These failures are caused by using populations that are too small to reliably
solve the problem in the first place (the GA with N = 500 fails about half the
time without plagues) and by the plagues emptying these populations quickly.
Possible remedies include using smaller plagues or restricting the final population
size to a fraction of the original size (instead of zero individuals). In any case,
we emphasize that this set of experiments was intended to study when and how
the plagues would fail.
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(c) N = 750
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Fig. 3. Mean fitness vs. computational effort for k = 4 and plagues that remove 5 and
10 individuals per generation. Error bars denote 95% confidence intervals.

Next, we study how plagues scale up to more difficult problems. We increased
the problem difficulty by increasing k to 5 and 6. Given the increase in the dif-
ficulty of the problem, the initial size for the population has been also increased
to N = 5000 individuals. Given the large initial size of the populations, we also
enlarged the size of the plagues, removing 50, 75, and 100 individuals per gen-
eration. The effect of smaller plagues would be negligible. Figure 4 presents the
results of these experiments. As in the case of k = 4, removing more individuals
seems beneficial. However, the graph for k = 6 shows that a few of the experi-
ments did not reach the global optima and that as more individuals are removed,
the reliability of the algorithm decreases. This behavior is expected, because as
problems become more difficult larger populations are required to solve them
and aggressive plagues might delete too many individuals or might delete them
too fast (emptying the population before it has enough time to reach the global
optimum).

Figure 5 shows results with k = 8. We experimented with initial popula-
tion sizes of 12000 and 14000 individuals and plagues that remove 50 and 75



0

5

10

15

20

25

30

35

40

45

50

0 50000 100000 150000 200000 250000

N
um

be
r 

of
 o

pt
im

a

Function evaluations

No Plague
Plague 50
Plague 75

Plague 100

(a) k = 5

0

5

10

15

20

25

30

35

40

45

50

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

N
um

be
r 

of
 o

pt
im

a

Function evaluations

No Plague
Plague 50
Plague 75

Plague 100

(b) k = 6

Fig. 4. Mean number of times the experiment reached the global optimum out of 50
experiments. The initial population size was n = 5000 individuals. The error bars
denote 95% confidence intervals.

individuals per generation. In all cases, the plagues resulted in computational
savings.

Fig. 5. Number of times that the maximum fitness is reached in 50 runs with and
without plagues. k = 8.

5 Conclusions

This paper introduced the use of plagues to reduce the population size in genetic
algorithms. By means of experiments with a tunable problem, we have shown
that plagues help GAs to find solutions of a given quality using smaller efforts
than the classic fixed-size algorithm.

Although we have employed only a plain version of the plague that removes
a fixed number of the worst individuals in each generation, other elimination



techniques should be tested in the future. Experiments varying the frequency
and size of plagues are also necessary to verify the sensitivity of the GA to these
parameters.
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ica. In: Actas del 2 Congreso Español obre Metaheuristicas, Algoritmos Evolutivos
y Bioinspirados, Maeb 03. (2003) 424–428

4. F. Fernandez, M. Tomassini, L.V.: Saving computational effort in genetic pro-
gramming by means of plagues. In: Proceeding of the Conference on Evolutionary
Computation 2003, IEEE Press (2003) 2042–2049

5. Fernandez, F., Vanneschi, L., Tomassini, M.: The effect of plagues in genetic pro-
gramming:a study of variable-size populations. In Ryan, C., Soule, T., Keijzer,
M., Tsang, E., Poli, R., Costa, E., eds.: Proceedings of the Sixth European Con-
ference on Genetic Programming (EuroGP-2003). Volume 2610 of LNCS., Essex,
UK, Springer Verlag (2003) 317–326

6. Goldberg, D.E.: Sizing populations for serial and parallel genetic algorithms. In
Schaffer, J.D., ed.: International Conference on Genetic Algorithms (ICGA), San
Mateo, CA, Morgan Kaufmann (1989) 70–79

7. Goldberg, D.E., Rudnick, M.: Genetic algorithms and the variance of fitness.
Complex Systems 5 (1991) 265–278
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